82 research outputs found

    Managed Aquifer Recharge as a Tool to Enhance Sustainable Groundwater Management in California

    Get PDF
    A growing population and an increased demand for water resources have resulted in a global trend of groundwater depletion. Arid and semi-arid climates are particularly susceptible, often relying on groundwater to support large population centers or irrigated agriculture in the absence of sufficient surface water resources. In an effort to increase the security of groundwater resources, managed aquifer recharge (MAR) programs have been developed and implemented globally. MAR is the approach of intentionally harvesting and infiltrating water to recharge depleted aquifer storage. California is a prime example of this growing problem, with three cities that have over a million residents and an agricultural industry that was valued at 47 billion dollars in 2015. The present-day groundwater overdraft of over 100 km3 (since 1962) indicates a clear disparity between surface water supply and water demand within the state. In the face of groundwater overdraft and the anticipated effects of climate change, many new MAR projects are being constructed or investigated throughout California, adding to those that have existed for decades. Some common MAR types utilized in California include injection wells, infiltration basins (also known as spreading basins, percolation basins, or recharge basins), and low-impact development. An emerging MAR type that is actively being investigated is the winter flooding of agricultural fields using existing irrigation infrastructure and excess surface water resources, known as agricultural MAR. California therefore provides an excellent case study to look at the historical use and performance of MAR, ongoing and emerging challenges, novel MAR applications, and the potential for expansion of MAR. Effective MAR projects are an essential tool for increasing groundwater security, both in California and on a global scale. This chapter aims to provide an overview of the most common MAR types and applications within the State of California and neighboring semi-arid regions

    A laboratory study on cold-mix, cold-lay emulsion mixtures

    Get PDF
    This paper describes laboratory experiments and presents results for the performances of cold-mix, cold-lay emulsion mixtures. The main objective of the experiments was to evaluate and improve the properties of the cold mixtures. The mixture properties evaluated were: volumetric properties, indirect tensile stiffness modulus (ITSM), repeated load axial creep and fatigue. These properties were compared with conventional hot asphalt mixtures not containing any waste/recycled materials. To optimise the performances of the mixtures, a target of ITSM value of 2000 MPa was selected. At full curing conditions, the stiffness of the cold mixes was found to be very similar to that of hot mixtures of the same penetration grade base bitumen (100 pen). Test results also show that the addition of 1–2% cement significantly improved the mechanical performance of the mixes and significantly accelerated their strength gain. The fatigue behaviour of the cold mixes that incorporated cement was comparable with that of the hot mixtures

    Defining complementary tools to the IVI. The Infrastructure Degradation Index (IDI) and the Infrastructure Histogram (HI)

    Full text link
    [EN] The Infrastructure Value Index (IVI) is quickly becoming a standard as a valuable tool to quickly assess the state of urban water infrastructure. However, its simple nature (as a single metric) can mask some valuable information and lead to erroneous conclusions. This paper introduces two complementary tools to IVI: The Infrastructure Degradation Index (IDI) and the Infrastructure Histogram (HI). The IDI is focused on time (compared to the IVI, focused on value), represents an intuitive concept and behaves in a linear way. The joint analysis of IVI and IDI provides results in a more complete understanding of the state of the assets, while maintaining the simplicity of the tools. The Infrastructure Histogram allows for a full evaluation of the infrastructure state and provides a detailed picture of network age compared to its expected life, as well as an order of magnitude of the required investments in the following years.Cabrera Rochera, E.; Estruch-Juan, ME.; Gomez Selles, E.; Del Teso-March, R. (2019). Defining complementary tools to the IVI. The Infrastructure Degradation Index (IDI) and the Infrastructure Histogram (HI). Urban Water Journal. 16(5):343-352. https://doi.org/10.1080/1573062X.2019.1669195S343352165Alegre, H., Vitorino, D., & Coelho, S. (2014). Infrastructure Value Index: A Powerful Modelling Tool for Combined Long-term Planning of Linear and Vertical Assets. Procedia Engineering, 89, 1428-1436. doi:10.1016/j.proeng.2014.11.469Amaral, R., Alegre, H., & Matos, J. S. (2016). A service-oriented approach to assessing the infrastructure value index. Water Science and Technology, 74(2), 542-548. doi:10.2166/wst.2016.250Aware-p.org. 2014. “AWARE-P/Software.” Accessed 25 November 2018. http://www.aware-p.org/np4/software/Baseform. 2018. “Baseform.” Accessed 24 November 2018. https://baseform.com/np4/productCanal de Isabel II Gestión. 2012. Normas Para Redes de Abastecimiento. [Standards for Water Supply Networks.]. https://www.canalgestion.es/es/galeria_ficheros/pie/normativa/normativa/Normas_redes_abastecimiento2012_CYIIG.pdfFrost, and Sullivan. 2011. “Western European Water and Wastewater Utilities Market.” https://store.frost.com/western-european-water-and-wastewater-utilities-market.html#section1Leitão, J. P., Coelho, S. T., Alegre, H., Cardoso, M. A., Silva, M. S., Ramalho, P., … Carriço, N. (2014). Moving urban water infrastructure asset management from science into practice. Urban Water Journal, 13(2), 133-141. doi:10.1080/1573062x.2014.939092Marchionni, V., Cabral, M., Amado, C., & Covas, D. (2016). Estimating Water Supply Infrastructure Cost Using Regression Techniques. Journal of Water Resources Planning and Management, 142(4), 04016003. doi:10.1061/(asce)wr.1943-5452.0000627Marchionni, V., Lopes, N., Mamouros, L., & Covas, D. (2014). Modelling Sewer Systems Costs with Multiple Linear Regression. Water Resources Management, 28(13), 4415-4431. doi:10.1007/s11269-014-0759-zPulido-Velazquez, M., Cabrera Marcet, E., & Garrido Colmenero, A. (2014). Economía del agua y gestión de recursos hídricos. Ingeniería del agua, 18(1), 95. doi:10.4995/ia.2014.3160Rokstad, M. M., Ugarelli, R. M., & Sægrov, S. (2015). Improving data collection strategies and infrastructure asset management tool utilisation through cost benefit considerations. Urban Water Journal, 13(7), 710-726. doi:10.1080/1573062x.2015.102469

    What Do Community Benefits Agreements Deliver? Evidence From Los Angeles

    Full text link

    Effects of improved street lighting on crime

    Get PDF
    Improved street lighting serves many functions and is used in both public and private settings. The prevention of personal and property crime is one of its objectives in public space, which is the main focus of this review. There are two main theories of why improved street lighting may cause a reduction in crime. The first suggests that improved lighting leads to increased surveillance of potential offenders (both by improving visibility and by increasing the number of people on the street) and hence to increased deterrence of potential offenders. The second suggests that improved lighting signals community investment in the area and that the area is improving, leading to increased community pride, community cohesiveness, and informal social control. The first theory predicts decreases in crime especially during the hours of darkness, while the second theory predicts decreases in crime during both daytime and nighttime. Results of this review indicate that improved street lighting significantly reduces crime. This lends support for the continued use of improved street lighting to prevent crime in public space. The review also found that nighttime crimes did not decrease more than daytime crimes. This suggests that a theory of street lighting focusing on its role in increasing community pride and informal social control may be more plausible than a theory focusing on increased surveillance and increased deterrence. Future research should be designed to test the main theories of the effects of improved street lighting more explicitly, and future lighting schemes should employ high quality evaluation designs with long-term followups

    Factors Facilitating Construction Industry Development

    Get PDF
    This paper reports on a study aimed at identifying the key factors associated with construction industry development worldwide, by using a grounded theory approach. This involved, firstly, the identification of 62 variables from earlier studies. A questionnaire survey was then used to elicit views of the current strength of each variable. The resulting data were factor analysed and a set of eight key factors obtained comprising: (1) Industry-led better practice and culture; (2) Financial resources and investor confidence; (3) Human skills and culture of transparency; (4) Government policies and strategies supporting construction business; (5) Research and Development for construction; (6) Self-reliant construction culture; (7) Institutional support; and (8) Supportive attitudes from Aid agencies. These appear to be relevant to both developed and developing countries
    corecore